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A	quadratic	mating	consists	of	a	quadratic	rational	function,	whose	Julia	sets	contain	two	complementary	
components,	each	of	which	is	the	Julia	set	of	a	quadratic	polynomial	located	on	complimentary	hemispheres	of	
the	Riemann	sphere.	Two	approaches	can	be	used.	In	the	first,	one	of	the	rational	function’s	critical	points	is	
given	a	fixed	period	and	the	other	is	allowed	to	vary,	forming	a	parameter	plane	of	matings.	In	the	second,	
including	Medusa,	a	sequence	of	coefficients	is	combinatorially	generated	from	external	angles,	using	theory	of	
Thurston	and	others	developed	by	John	Hubbard.	Included	are	observations	of	Julia	set	matings	utilizing	Medusa	
(Boyd	&	Henriksen	2012)	and	Perk(0)	moduli	space	slices	(Devaney	et	al.	2013)	in	Dark	Heart	(King	2016)	and	
Per3(0)		in	Mandel	(Jung	2014),	also	including	Chéritat’s	(2015)	and	Sharland’s	(2012)	mating	examples.	
	

	
Fig	1:	Left:	Periodic	moduli	space	slices	and	Julia	set	matings	using	rational	functions	(Devaney	et	al.	2013),	which	are	also	

general	for	mating	a	global	array	of	Julia	sets	with	low	period	cases.	Right:	Medusa	matings,	complement	those	created	by	the	
slice	method,	mating	Julia	sets	defined	by	any	two	external	angles,	using	coefficients	produced	by	the	Medusa	algorithm.		

The	Perk(0)	generating	functions	are:	 f1(z) = z
2 + c,  f2 (z) = c / (z

2 + 2z),  f3(z) = (z−1)(z− c / (2− c)) / z
2 	and	

f4 (z) = (z− 4c / (10c+1))(z− (1+ 2c) / (1+ 6c)) / z
2 .		Medusa	matings	are	of	the	form	 f (z) = (az2 +1− a) / (bz2 +1− b) .	

	
The	Medusa	method	favours	Julia	sets	identified	by	external	angles	as	shown	in	fig	3,	but	the	slice	method	can	
readily	find	matings	with	irrational	flows,	provided	they	are	mated	with	low	period	attractors	as	in	fig	2	right.	
	

	 	
Fig	2:	Left:	Medusa	[1/7,1/3]	[9/31,1/3]	and	[1/1,1/15].	Right:	Per4(0)	matings	with	a	Siegel	disc	and	a	pd	5	parabolic	set.			

	
Although	Medusa	can	diverge,	or	remain	unstable	for	some	values,	it	does	give	comparable	results	for	many	
examples	of	periodic	domains	with	odd	external	angles,	where	the	methods	appear	to	be	homologous.	For	
example	(3,2)	(5,2)	and	(1,4)	above	have	homologous	Medusa	Julia	matings	[1/7,1/3]	[9/31,1/3]	and	[1/1,1/15]	
shown	in	fig	2,	implying	the	functions,	while	different,	have	conjugate	dynamics.	However,	it	is	more	challenging	



to	find	correspondences	in	some	other	cases,	although	both	approaches	appear	to	give	valid	matings.	Compare	
for	example		[1/7	1/15]	in	fig	3	with	(3,4)	above	and	the	example	from	the	smaller	period	3	bulb	fig	3	right,	with	
location	shown	at	(a).		All	three	are	topologically	distinct	matings.	
	

	 	
Fig	3:	[1/7	1/15]	mating	periods	3	and	4	and	the	key	Per4(0)	period	3	mating	at	(a)	indicates	differences,	which	may	be	due	

to	the	generating	function	of	the	parameter	plane	Per4(0)	since	the	right-hand	image	is	asymmetric,	as	in	figs	7,	8.	
	

Neither	does	the	[1/7	1/7]	self-mating	in	fig	4	appear	to	be	homologous	to	any	of	those	of	Per3(0),	possibly	due	
to	its	suppression	of	pd	3,		although	it	does	appear	homologous	to	that	of	Arnaud	Chéritat’s	Thurston	algorithm.	

	

	 	
Fig	4:	[1/7	1/7]	which	doesn’t	appear	in	Per3(0)	and	an	equivalent	mating	by	Arnaud	Chéritat	(2015).	

	
Medusa	correctly	portrays	both	[1/7,1/5]	and	[1/5,1/7]	mating	the	period	3	bulb	to	its	period	4	dendritic	
Mandelbrot,	as	shown	in	fig	1,	and	it	can	portray	two	dendritic	Mandelbrot	satellite	Julias	on	the	same	side	of	the	
x-axis	as	shown	below	for	[5/31	1/5]	and	[1/5	5/31],	shown	below	left	and	centre.	But	the	[1/5,1/5]	and	
[5/31,5/31]	self-matings,	shown	at	right	have	distinct	appearances.	Significantly	the	coefficients	of	[1/5,1/5]	are	
complex	conjugates.	The	second	shows	its	structure	to	be	a	complementary	fractal	in	the	detail	right.	
	

	 	
Fig	5:	Medusa	matings	[5/31	1/5]	and	[1/5	5/31],	and	[1/5,1/5]	and	[5/31,5/31]	main	body	between	period	bulb		

Julias		and	dendritic	Mandelbrot	Julia	sets.	
	
A	situation	where	something	provocative	happens	is	the	Medusa	mating	between	the	period	3	bulb	Julia	set	
(Rabbit)	with	the	Julia	set	of	the	period	3	Mandelbrot	on	the	negative	x	dendrite	(Airplane).	The	Medusa	
algorithm	for	[1/7,3/7]	and	[3/7,1/7]	don’t	look	at	face	value	like	a	mating	between	a	bulb	and	a	dendritic	
Mandelbrot	Julia,	as	we	saw	in	[1/5,1/7]	and	they	are	apparently	homologous	to	one	another	as	shown	in	fig	6.	
	

	 	
Fig	6:	[1/7,3/7]	and	[3/7,1/7]	compared	with	Tom	Sharland’s	and	Arnaud	Chéritat’s	versions.	

	



The	same	situation	as	in	fig	6	appliss	also	to	[1/511,255/511]	(fig	1),	which	is	also	a	mating	between	a	period	9	
bulb	and	a	period	9	dendritic	Mandelbrot	on	the	negative	x-axis.			
	
Wolf	Jung	has	pointed	out	that	these	aspects	can	be	explained	by	shared	matings	-		‘different	pairs	of	polynomials	
may	give	the	same	rational	map.		One	of	the	simplest	examples	is	that	the	mating	of	Rabbit	and	Airplane	is	the	
same	as	the	mating	of	Airplane	and	Rabbit,	up	to	a	rescaling.		In	fact	the	map	can	be	rescaled	such	that	it	is	
invariant	under	inversion	1/z,	although	it	is	not	a	self-mating.		Moreover,	the	fact	that	six	Fatou	components	
meet	at	a	single	point,	can	be	explained	in	terms	of	ray	connections’.	This	example	is	confirmed	again	the	image	
right	from	Tom	Sharland’s	(2012)	Harvard	lecture.	Thurston	equivalence	means	that	Julia	sets	of	matings	are	
unique	up	to	conjugacy	classes	via	Mobius	transformations.	
	
In	fig	7	we	explore	this	mating	using	two	versions	of	Per3(0).	The	period	3	dendritic	Mandelbrot	(a)	has	a	mating	
looking	as	we	would	expect,	in	both	Dark	Heart	(upper	row)	and	Mandel	(lower	row)	–	very	obviously	the	
Airplane	and	Rabbit.		The	other	period	3	regions	in	the	parameter	planes	are	(b)	which	is	not	homologous	to	fig	6	
and	(c),	which	differs	in	Dark	Heart,	but	is	identical	to	fig	6	in	Mandel,	raising	a	question	about	the	relationship	
between	them	and	whether	the	Julia	sets	form	homologous	matings	under	a	Mobius	transformation.	
	

		

	
Fig	7:		Dark	Heart	and	Mandel	versions	of	(3,3)	Per3(0)	matings	show	subtle	differences	of	topology.	

	
The	two	parameter	planes	illustrated	in	fig	8	appear	at	first	sight	to	be	identical	but	have	subtle	differences	in	
their	topology	to	the	right	of	the	central	basin	which	ramifies	into	the	Julia	sets.	The	rational	function	in	Mandel	
is	 f3

M (z) = (z2 + c3 − c−1) / (z2 − c2 ) 	with	period	3	critical	orbit	∞→1→−c 	and	critical	point	0,	while	the	one	in	
Dark	Heart	(Devaney	et	al.	2013)	is	 f3

D (z) = (z−1)(z− c / (2− c)) / z2with	∞→1→ 0 and	critical	point	c.	Both	
appear	to	give	valid	matings	despite	the	asymmetry,	so	presumably	must	differ	by	a	Mobius	transformation.	
	

	
Fig	8:	Running	in	Dark	Heart,	the	two	Per3(0)	parameter	planes	and	their	Julia	sets	have	subtle	differences.	

	
To	seek	a	resolution	for	the	period	4	case	we	need	to	generate	a	symmetric	Julia	spectrum	by	confining	the	zero	
and	infinite	critical	points	to	zero	and	infinity	as	is	the	case	for	the	period	3	version	in	Mandel:	



f (z) = z
2 + p
z2 + q

, ∞→1→−c,  ⇒1+ p = −c(1+ q),  g = −c2, p = −c(1− c2 )−1= c3 − c−1,   f (z) = (z2 + c3 − c−1) / (z2 − c2 ) 	

We	now	need	to	assign	an	arbitrary	point	a	to	retain	the	correct	degrees	of	freedom	as	shown	below.	

f (z) = z
2 + p
z2 + q

, ∞→1→ a→−c,  1→ a⇒1+ p = a(1+ q),  a→−c⇒ a2 + p = −c(a2 + q),  −c→∞⇒ g = −c2,  

p = a(1− c2 )−1,  a2 + a(1− c2 )−1= −ca2 + c3, a2 + a((1− c)− (c2 − c+1) = 0, a = (c−1)± (c−1± 5c2 − 6c+ 5) / 2,  

f (z) = (z2 + (c−1± 5c2 − 6c+ 5)(1− c2 ) / 2−1) / (z2 − c2 )

	

Because	this	generating	function	now	involves	a	fractional	power	of	c,	the	complex	parameter	plane	becomes	
split,	resulting	in	two	“fermionic”	parameter	planes	connected	by	the	elliptic	split	illustrated	(right)	in	fig	9	
below.	Comparison	of	these	with	the	Medusa	matings	for	the	6	period	four	locations	in	the	quadratic	Mandelbrot	
set	(left)	of	these	shows	that	the	two	planes	provide	a	full	representation	of	the	matings,	with	all	these	cases	and	
confirms	the	consistency	of	the	two	mating	methods.	
	

	
Fig	9:	Global	correspondence	between	Medusa	matings	for	all	the	period	4	types	and	the	“fermionic”	Per4(0).	

	
We	now	explore	shared	or	equivalent	matings	further	in	Medusa.	The	two	dendritic	Mandelbrot	matings	
[3/7,1/5]	and	[1/5,3/7]	top	row	fig	10	appear	to	be	equivalent	to	[1/7,6/15]	and	[6/15,1/7]	on	the	period	3	and	
2x2	bulbs,	again	suggesting	shared	matings.	
	

	

	
Fig	10:	[1/5	3/7]	gives	the	same	Medusa	mating	as	[1/7	6/15]	



	
Tom	Sharland	(2012)	notes	that	the	two	matings	in	fig	11	are	known	to	be	equivalent.	Indeed	Medusa	not	only	
gives	identical	coefficients	for	both,	but	the	inverse	mating	[7/15	1/5]	is	homologous	to	the	original,	even	though	
the	Fatou	basins	of	zero	(black)	and	infinity	(shaded	orange)	have	been	exchanged.	
	

	
Fig	11:		Equivalent	matings	[1/5	7/15]	and	[4/5	6/15]	with	their	Julia	set	and	that	of	the	inverse	matings.	

	
Clustering	is	the	condition	where	the	critical	orbit	Fatou	components	group	together	to	form	a	periodic	cycle.	
Tom	comments	that	the	matings	right	in	fig	11	all	have	period	3	cluster	cycles	with	the	same	intrinsic	data.	But	
they	certainly	don’t	all	look	the	same!	In	simple	cases,	(periods	1	&	2)	the	combinatorial	data	of	a	cluster	
completely	defines	a	rational	map,	but	in	period	3	the	experimental	pictures	suggest	not.		

	

	

						 	

	 	
Fig	12:		Equivalent	period	3	cluster	matings	correspond	to	Tom	Sharlnd’s	images,	provided	you	pick	the		

appropriate	pair	of	ratios	in	the	left-hand	figures.	Some	appear	to	be	topologically	distinct.	
	
Now	let’s	turn	to	even	denominators	where	we	have	rays	to	Misiurewicz	points	on	the	dendrites.	There	is	no	
problem	with	the	first	denominator	being	even	as	[1/4,1/7]	shows	us	below	left,	and	[1/4,1/511]	at	right,	but	if	
we	choose	[1/7,1/4],	we	get	the	infinite	Julia	set	shown	centre.	Noting	that	Medusa	has	placed	the	Julia	set	over	
infinity	instead	of	zero	-	the	correct	thing	to	do	as	[1/4]	has	no	interior	basin	so	it	should	sit	on	infinity,	we	can	

make	the	Mobius	transformation	 az2 +1− a
bz2 +1− b

→
(1− b)z2 + b
(1− a)z2 + a

	and	we	have	a	nice	Julia	set	whose	coefficients	are	

distinct	from	those	of	[1/4,1/7]	which	is	otherwise	homologous	to	[1/4,1/7].	
	



	 	 	
Fig	13:	Left:	[1/6,1/7]	with	dendritic	tree	detail.	Centre:	[1/7,1/6]	and	its	Mobius	inversion.	Right:	[1/4,1/511]	

	
	[1/4,1/6]	and	[1/4,1/2]	also	look	to	be	plausible	because	they	are	mating	a	chaotic	dendritic	Julia	set	to	another	
one,	so	the	whole	plane	is	close	to	Julia	…		but	is	this	the	case	if	one	should	have	complimentary	shading?	
	

	
Fig	14:	Starry	sky	with	symmetries.	Medusa	mating	of	two	dendritic	Julia	sets	[1/4,1/2]	

	
Arnaud	Chéritat’s	Thurston	algorithm	does	give	clear	evolutionary	portraits	of	matings	of	dendritic	Julia	sets	
including	[1/6	5/14],	in	fig	15.	He	notes	that	according	to	Shishikura	and	Milnor,	this	gives	a	Lattès	map.	
	

	
Fig	15:	Three	stages	in	Arnaud	Chéritat’s	(2015)	movie	of	dendritic	Julia	set	mating	[1/6	5/14]	appears	to	solve	this.	

Medusa	iterations	remained	unstable	for	these	values.	Many	more	available	at	Arnaud’s	link	below.	
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