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Introduction:	My	research	in	dynamical	systems	has	
inexorably	led	me	from	the	better-known	fractal	
dynamics	of	Julia	and	Mandelbrot	sets,	including	
those	of	the	Riemann	Zeta	function1,	to	the	more	
elusive	forms	of	Kleinian	limit	sets.		
	
Julia	sets	and	their	universal	atlases,	Mandelbrot	sets,	
have	become	ubiquitous	features	of	the	mathematical	
imagination,	demonstrating	the	power	of	computer	
algorithms	to	generate,	in	scintillating	detail,	
visualizations	of	complex	dynamical	systems,	
complementing	theory	with	vivid	counter-examples.	
However	Gaston	Julia’s	original	explorations	took	
place	abstractly,	long	before	the	explosion	of	
computing	technology,	so	it	was	impossible	to	
appreciate	their	fractal	forms	and	it	was	only	after	
Beniot	Mandelbrot	popularized	the	set	that	now	
bears	his	name	that	the	significance	of	Julia’s	work	
again	became	recognized.	It	is	a	historical	irony,	very	
pertinent	to	this	article,	that	the	Mandelbrot	set	was	
actually	discovered	by	Robert	Brooks	and	Peter	
Matelski2	as	part	of	a	study	of	Kleinian	groups.	It	was	
only	because	Mandelbrot	was	a	fellow	at	IBM	that	he	
had	the	computing	resources	to	depict	the	set	in	high	
resolution,	as	a	universal	multi-fractal	atlas.	
	
Julia	sets	and	are	generated	by	iterating	a	complex	
polynomial,	rational	or	other	analytic	function,	such	
as	exponential	and	harmonic	functions.	For	a	non-
linear	function,	exemplified	by	the	quadratic	iteration	
z→ fc (z) = z

2 + c ,	successive	iterations	either	follow	
an	ordered	pattern,	tending	to	a	point,	or	periodic	
attractor,	or	in	a	complementary	set	of	cases,	behave	
chaotically,	displaying	the	butterfly	effect	and	other	
features	of	classical	chaos.	The	Julia	set	is	the	set	of	
complex	values	on	which	the	iteration	is	chaotic	and	
the	complementary	set,	where	it	is	ordered,	is	named	
after	the	Julia	set’s	co-discoverer	Pierre	Fatou.	The	
Mandelbrot	set	M,	fig	1(h),	becomes	an	atlas	of	all	the	
Julia	sets	 ,	by	starting	from	the	critical	point:	
z0 : f '(z0 ) = 0 	(the	last	point	to	escape	to	infinity)	and	
applying	the	iteration	for	every	complex	c-value.	In	a	
fascinating	demonstration	of	algorithmic	topology,	if	
c ∈M the	fractal	Julia	set	Jc	of	c	is	topologically	
connected,	otherwise	Jc	forms	a	totally-disconnected	
fractal	dust,	or	Cantor	set,	with	the	most	ornate	and	
challenging	examples	lying	close	to,	or	on,	the	
boundary	of	M.	
	
Alongside	images	on	the	internet	of	complex	fractals,	
you	will	also	find	a	more	esoteric	class	of	fractal	sets	
that	often	look	like	medieval	arboreal	tapestries,	and	

go	variously	by	the	names	of	Kleinian	and	quasi-
Fuchsian	limit	sets,	but	the	programs	that	generate	
them	are	much	more	difficult	to	find	–	to	such	an	
extent	that	I	resolved	to	generate	accessible	multi-
platform	versions	in	the	public	domain	to	enable	
anyone	to	explore	them.	
	
To	make	these	fascinating	systems	freely	accessible	
and	to	aid	further	research,	I	have	thus	developed	an	
interactive	website:	Kleinian	and	Quasi-Fuchsian	
Limit	Sets:	An	Open	Source	Toolbox,3	with	freely	
available	cross-platform	software,	including	a	Matlab	
toolbox	and	a	generic	C	script,	a	hundred	times	
faster,	that	will	compile	and	generate	images	on	any	
GCC-compatible	operating	system,	as	well	as	a	MacOS	
viewing	app,	enabling	full	dynamical	exploration	of	
the	limit	sets	at	will.	These	limit	sets	also	have	an	
intriguing	history,	which	I	will	sketch	only	briefly,	as	
it	is	elucidated	in	definitive	and	engaging	detail	in	
Indra’s	Pearls:	The	Vision	of	Felix	Klein4.	
Interspersed	below	are	short	references	(e.g.	IP1)	so	
one	can	refer	to	an	expanded	discussion	of	each	topic	
by	browsing	the	book.	
	

	
Fig	1:	Julia	sets	and	Kleinian	limit	sets	(a-c)	are	two	classes	
of	complex	fractals,	the	former	being	the	set	on	which	a	

non-linear	function,	is	chaotic,	and	the	latter	the	limit	set	of	
two	interacting	Möbius	transformations.	Just	as	Julia	sets	
(g)	have	the	Mandelbrot	set	(h),	as	atlas,	limit	sets	with	
Tb=2,	as	in	fig	3	have	the	Maskit	slice	(f)	as	atlas,	with	the	

critical	states	on	the	upper	boundary.	
	
In	this	field,	we	again	witness	an	evolution,	where	
research	and	discovery	has	at	first	been	driven	by	
abstract	theoretical	advances,	which	are	then	

Jc



followed	by	the	emergence	of	innovative	
computational	approaches	that	yield	critical	
examples	displaying	the	richness	and	variety	that	
gives	the	theory	its	full	validation.		
	
The	field	of	Kleinian	groups	was	founded	by	Felix	
Klein	and	Henri	Poincaré,	the	special	case	of	Schottky	
groups	having	been	elucidated	a	few	years	earlier	by	
Friedrich	Schottky.	The	ensuing	story,	as	depicted	in	
Indra’s	Pearls	begins	with	a	visit	to	Harvard	by	
Benoit	Mandelbrot	that	leads	to	David	Mumford	
setting	up	a	computational	laboratory	to	explore	
“some	suggestive	19th	century	figures	of	reflected	
circles	which	had	fascinated	Felix	Klein”.	Caroline	
Series	along	with	David	Wright,	assisted	by	Curt	
Mullen	who	had	held	summer	positions	at	IBM,	and	
other	collaborators	such	as	Linda	Keen,	then	began	to	
investigate	computational	exploration	of	these	limit	
sets.	In	David	Wright's	words:	"Take	two	very	simple	
transformations	of	the	plane	and	apply	all	possible	
combinations	of	these	transformations	to	a	point	in	
the	plane.	What	does	the	resulting	collection	of	
points	look	like?"	Indra’s	Pearls	continues	this	
human	and	mathematical	journey	in	elegant	detail,	
noting	the	contributions	of	many	researchers,	
including	Bernard	Maskit	and	Troels	Jørgensen	to	the	
unfolding	exploration	of	the	area.	
	
A	Mathematical	Nexus:	By	contrast	with	Julia	sets,	
Kleinian	limit	sets	are	algebraic	‘attractors’	generated	
by	the	interaction	of	two	Möbius	maps	a,	b	and	their	
inverses	A	=	a-1,	B	=	b-1.	Möbius	maps	IP62	are	
fractional	linear	transformations	operating	on	the	
Riemann	sphere	R,	fig	2(a),	represented	by	complex	
matrices.	Composition	of	maps	is	thus	equivalent	to	
matrix	multiplication:	

z→ a(z) = pz+ q
rz+ s
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Möbius	transformations	can	be	elliptic,	parabolic,	
hyperbolic,	or	loxodromica,	in	terms	of	their	trace	
Tr(a)	=	p	+	s,	as	complex	generalizations	of	the	
translations,	rotations	and	scalings	of	affine	maps	of	
the	Euclidean	plane.	They	map	circles	to	circles	on	R,	
counting	lines	in	the	complex	plane	as	circles	on	R.	
Möbius	maps	are	thus	simpler	in	nature	than	analytic	
functions	and	are	linear	and	invertible,	so	a	single	
Mobius	map	will	not	generate	an	interesting	fractal.	
However,	when	two	or	more	Möbius	maps	interact,	
the	iterations	of	points	in	R,	under	the	two	
transformations	and	their	inverses,	tend	

																																																								
a	Parabolic	maps	have	Tr2(a)=4	and	act	like	translations, 
with	one	fixed	point	on	R,	elliptic	maps	have	0<Tr2(a)<4	
and	behave	like	rotations	on	R,	hyperbolic	and	
loxodromic	maps	have	real	and	complex	values	lying	
outside	these	values	on	C		and	behave	like	(spirally)	
expanding	and	contracting	versions	of	scalings	on	R.	

asymptotically	towards	a	set	which	is	conserved	
under	the	transformations,	often	a	complex	fractal,	
called	the	limit	set	of	the	group.	When	the	two	
transformations	acting	together	form	certain	classes	
of	group,	including	Kleinian,	quasi-Fuchsian	and	
Schottky	groups,	their	limit	sets	adopt	forms	with	
intriguing	mathematical	properties.		
	
Because	they	form	an	interface	between	widely	
different	mathematical	areas,	their	dynamics	draw	
together	diverse	fields,	from	group	theory,	through	
topology,	Riemann	surfaces	and	hyperbolic	
geometry,	to	chaos	and	fractal	analysis,	perhaps	
more	so	than	any	related	area.	Depending	on	the	
particular	group,	its	actionb	may	transform	the	
topology	of	the	Riemann	sphere	into	that	of	another	
kind	of	topological	surface,	such	as	a	two-handled	
torus,	sometimes	with	pinched	handles,	fig	2	(e-g).	
	
A	Kleinian	group	is	a	discretec	subgroup	of	2	x	2	
complex	matrices	of	determinant	1	modulo	its	center	
-	the	set	of	elements	that	commute	with	every	
element	of	the	group.		
	
A	Schottky	group	IP96	is	a	special	form	of	Kleinian	
group,	consisting	of	two	(or	more)	of	Möbius	maps	a	
and	b	on	R,	each	of	which	maps	the	inside	of	one	
circle	C	onto	the	outside	of	the	other	D.	If	the	two	
pairs	of	circles	are	entirely	disjoint	as	in	fig	2(b),	the	
group	action	induces	a	topological	transformation	of	
R,	generating	a	multi-handled	torus	as	in	fig	2(e).		
	
A	quasi-Fuchsian	group	IP161	is	a	Kleinian	group	
whose	limit	set	is	contained	in	an	invariant	Jordan	
curve,	or	topological	circle,	so	their	limit	sets	are	
fractal	circles.	The	underlying	spaces	of	quasi-
Fuchsian	and	other	Kleinian	groups,	such	as	that	of	
the	Apollonian	gasket	fig	2(d),	can	be	defined	by	
pinching	the	topology	as	in	(f,	g),	so	that	the	limit	set	
becomes	a	fractal	tiling	by	circles	as	in	fig	3(a).	
	
The	group	interactions,	when	discrete,	induce	tilings	
in	the	complex	plane,	which	also	illustrate	
transformations	of	hyperbolic	geometryd.		
																																																								
b	This	new	topology	arises	from	the	quotient	of	the	
complement	of	the	limit	set	under	the	action	of	the	group.	
c	A	discrete	group	is	a	group	of	transformations	of	an	
underlying	space	possessing	the	discrete	topology,	where	
there	is	a	collection	of	open	sets	in	which	each	open	set	
corresponds	to	just	one	element	of	the	group.	Discrete	
groups	thus	appear	naturally	as	the	symmetries	of	discrete	
structures,	such	as	tilings	of	a	space.	
d	The	group	of	all	Möbius	transformations	is	isomorphic	to	
the	orientation-preserving	isometries	of		hyperbolic	3-
space	H3,	in	the	sense	that	every	orientation-preserving	
isometry	of	H3	gives	rise	to	a	Möbius	transformation	on	R	
and	vice	versa.	Hence	group	actions	of	such	
transformations	can	generate	hyperbolic	tilings.	Maurice	
Escher’s	“Angels	and	Demons”	tiling	is	a	representation	of	
the	modular	group,	which	is	also	manifest	in	the	



	
As	the	parameters	of	these	maps	vary,	the	limit	sets	
approach	a	boundary	in	parameter	space,	where	the	
limit	set	can	become	a	rational	circle	packing,	as	in	fig	
3(a-c)	or	irrationally	degenerate	(f,	g),	forming	a	
space-filing	fractal,	beyond	which	the	process	
descends	into	chaotic	dynamics	fig	6(d),	as	the	
groups	become	non-discrete	and	their	orbits	become	
entangled.	Like	the	Mandelbrot	set,	for	certain	
classes	of	limit	set,	one	can	generate	an	atlas,	called	
the	Maskit	slice,	fig	1(f),	whose	upper	boundary	
contains	these	limiting	cases.	
	
An	insightful	way	to	portray	their	actions	is	to	
determine	what	the	Möbius	transformations	do	to	
key	circles	involved	in	the	definitions	of	a	and	b.	A	
good	starting	point	is	with	pairs	of	Schottky	maps.	If	
all	the	circles	are	disjoint,	when	the	circles	are	
transformed	by	both	maps,	their	images	form	a	
cascade	of	circles,	which	tend	in	limit	to	a	Cantor	set,	
fig	2(b).	As	the	parameters	p,	q,	r,	and	s	of	each	are	
varied,	so	that	circle	pairs	come	together	and	touch,	
as	in	(c),	the	Cantor	set	transforms	into	a	circular	
limit	set.		
	

	
Fig	2:	(a)	The	Riemann	sphere	–	the	complex	plane	closed	
by	a	single	point	at	infinity.	(b)	Schottky	maps	forming	
Cantor	dust.	(c)	Touching	circles	forming	a	circular	limit	
set.	(d)	Four	circles,	all	touching,	forming	an	Apollonian	

gasket.	(e)	Schottky	maps	perform	a	surgery	of	R	to	form	a	
double	handled	torus.	(f)	If	the	commutator	is	parabolic,	as	

in	quasi-Fuchsian	limit	sets,	which	form	a	fractal	
topological	circle,	or	Jordan	curve,	whose	complements,	
quotient	by	the	group	into	a	pair	of	Riemann	surfaces,	the	
double	torus	becomes	pinched.	(g)	When	one	or	both	of	a	
and	b,	or	their	words,	are	also	parabolic,	as	in	the	gasket,	
(d)	and	those	in	fig	3,	one,	or	two	further	pinches	occur.	

	
There	is	an	alternative	way,	independently	of	
Schottky	groups,	to	uniquely	define	the	matrices	via	
their	traces	Ta,	Tb,	where	Ta	=	p	+	s,	as	in	(1),	if	we	
focus	on	maps	where	the	commutator	aba–1b–1	is	
parabolic,	with	T(aba–1b–1)	=	–2,	inducing	a	
cancellation	in	(2)	below.	Since	traces	are	preserved	
under	conjugacy	of	mappings	b	=	cac-1,	we	can	
simplify	the	discussion	to	conjugacy	classes,	reducing	
the	number	of	free	variables	in	the	two	matrices	to	a	
unique	solution.	This,	process,	affectionately	known	

																																																																																								
symmetries	of	the	gray	Apollonian	gasket	discs	IP206,	in	fig	
3(a),	and	has	a	similar	topological	pinching	IP216	to	fig	2(g).	

in	Indra’s	Pearls	as	‘Grandma’s	recipe’	IP227,	enables	
us	to	explore	new	classes	of	limit	set,	as	illustrated	in	
fig	2(d)	for	the	Apollonian	gasket,	which	can	also	be	
represented	via	4	circles,	all	of	which	touch,	as	shown	
in	black.		
	
The	asymmetric	nature	of	the	two	matrix	mappings	
generated	by	Grandma’s	recipe	can	be	seen	in	fig	1(b,	
d),	where	both	are	coloured	by	the	first	iterate.	
Although	the	commutator	is	parabolic	(resulting	in	
the	single	pinch	we	see	in	fig	2(f),	the	generators	a,	
and	b	can	be	loxodromic,	and	can	tend	to	parabolic	as	
well,	with	the	transition	from	the	quasi-Fuchsian	set	
of	fig	1(b)	where	Ta	=	Tb	=	2.2	to	the	Apollonian	
gasket	fig	3(a),	where	Ta	=	Tb	=	2,	resulting	in	the	
two	further	pinches	in	fig	2(g)	and	in	each	of	the	
examples	in	fig	3,	where	b	is	parabolic	with	Tb	=	2.	
	
Because	the	limit	set	is	the	place	where	all	points	are	
asymptotically	mapped	under	interaction	of	the	
transformations	and	their	inverses,	one	can	simply	
pick	each	point	on	the	plane	and	repeatedly	map	it	by	
a	random	sequence	of	the	two	transformations	and	
their	inverses	and	these	points	will	become	
asymptotically	drawn	to	the	limit	set.	The	trouble	
with	this	process	is	that,	although	it	can	crudely	
portray	any	limit	set,	including	chaotic,	non-discrete	
examples,	the	asymptotic	iterates	are	distributed	
exponentially	unevenly,	so	that	some	parts	of	the	
limit	set	are	virtually	never	visited	and	the	limit	set	is	
incompletely	and	only	very	approximately	portrayed,	
as	in	fig	6(d).		
	
By	contrast	with	the	non-linear	functions	of	Julia	sets,	
where	depiction	algorithms,	such	as	modified	inverse	
iteration	fig	1(g)	and	distance	estimation,	depend	on	
analytic	features,	such	as	derivatives	and	potential	
functions,	an	accurate	description	of	Kleinian	group	
limit	sets	requires	taking	full	strategic	advantage	of	
the	underlying	algebraic	properties	of	the	group	
transformations.	
	
Descending	the	Spiral	Labyrinth:	The	depth-first	
search	algorithm	IP141	to	depict	the	limit	sets	is	
ingenious	and	extremely	elegant.	The	aim	is	to	
traverse	the	algebraic	space	of	all	word	combinations	
of	the	generators	a,	b,	a-1,	b-1	in	a	way	which	draws	a	
continuous	piecewise	linear	approximation	to	the	
fractal	of	any	desired	resolution.	
	
To	do	this,	we	generate	a	corkscrew	maze,	where	we	
traverse	deeper	and	deeper	layers	of	the	search	tree,	
turning	right	at	each	descent	and	then	enter	each	
tunnel	successively,	moving	anticlockwise	around	the	
generators,	and	retreating	when	we	reach	the	inverse	
of	the	map	we	entered	by,	after	three	left	turns,	since	
the	map	and	its	inverse	cancel.	At	each	node	we	
retain	a	record	of	our	journey	down,	our	Ariadne’s	
thread,	by	multiplying	the	successive	matrices	as	we	
descend,	and	make	a	critical	test:	The	parabolic	
commutator	has	a	single	fixed	point,	which	
represents	an	infinite	limit	of	cyclic	repeats	of	the	



generators.	If	we	apply	the	composed	orbit	matrix	to	
the	fixed	point	of	the	clockwise	commutator	and	do	
the	same	for	the	anti-clockwise	commutator’s	fixed	
point	and	these	two	are	within	an	epsilon	threshold,	
this	means	going	the	‘opposite	way’	around	the	local	
fractal	leaves	us	within	resolution,	so	we	draw	a	line	
between	the	two	and	terminate	the	descent,	
retreating	and	turning	into	vacant	tunnels	and	
exploring	them,	until	we	find	ourselves	back	at	the	
root	of	the	tree.		
	
Using	the	fixed	points	has	the	effect	of	producing	a	
theoretically	infinite	orbit	of	transformations	that	
can	carry	us	to	any	part	of	the	limit	set,	and	because	
we	are	traversing	generator	space	systematically,	we	
will	traverse	parts	of	the	limit	set	that	are	visited	
exponentially	rarely	in	a	random	process.			
	
Navigating	the	Maskit	Slice:	If	we	focus	on	limit	sets	
where	b	is	parabolic	with	Tb	=	2,	and	only	Ta	varies,	
this	gives	us	a	complex	parameter	plane	called	the	
Maskit	slice	IP287,	fig	1(f),	forming	an	atlas	of	limit	
sets,	just	as	the	Mandelbrot	set	does	for	Julia	sets,	so	
we	can	explore	and	classify	their	properties.	To	
define	locations	on	the	slice,	we	need	to	be	able	to	
determine	the	traces	Ta	that	correspond	to	rational	
cases	involving	fractional	motion.	Key	to	this	are	the	
generator	words	formed	by	the	maps.	For	example	
3/10	in	fig	3(c)	has	a	generator	word	a3Ba4Ba3B	
symbolically	expressing	the	3/10	ratio	(3	B’s	to	10	
a’s),	which	is	also	parabolic.	For	general	fractional	
values	p/r	we	can	determine	the	traces	recursively	
from	two	key	relations	–	extended	Markov	and	
Grandfather	IP192:		
Taba-1b-1	=	T2a+T2B+T2aB	–	Ta.TB.TaB	–2	 			(2)		
Tmn	=	Tm.Tn	–	Tm-1n		 	 	 			(3).			
	

	
Fig	3:	(a)	Apollonian	gasket	fraction	0/1	Ta	=	2,	shaded	to	
highlight	separate	components	in	the	mapping,	(b)	the	

1/15	limit	set	with	the	15	steps	of	the	parabolic	word	a15B	
in	red.		Intriguingly,	as	1/n	–>	1/∞	=	0,	the	limit	sets	do	not	
tend	to	the	gasket,	although	their	traces	and	matrices	do,	as	
the	limiting	limit	set	has	an	additional	fourfold	symmetry	
of	rotation	by	π/2	already	evident	in	(b).	(c)	The	3/10	set	
coloured	by	the	last	iterate.		(d)	A	free	discrete	group.	(e)	
Singly-degenerate	Farey	(LR)∞	set	of	the	Golden	mean.	(f)	

Spirally	degenerate	(L10R)	∞	set.	
	

We	can	use	these	relations	to	successively	move	
down	the	Farey	tree	of	fractions	IP291,	see	fig	1(e),	
because	neighbours	on	the	tree	have	generator	

words	combining	via	Farey	mediants		
wp+q/r+s	=	wp/rwq/s	,	and	so	the	grandfather	identity	
implies	Twp+q/r+s	=	Twp/r	Twq/s	–	Twp–q/r–s	because,	in	
the	last	term,	the	combined	word	m-1n	has	neatly	
cancelling	generators	in	the	middle.	Since		
Taba-1b-1	=	–2	in	(2),	for	p/r,	this	reduces	to	solving	
an	r-th	degree	polynomial.	
	
If	we	plot	all	the	polynomial	solutions	to	the	p/r	limit	
sets,	for	r	≤	n	we	have	the	Maskit	slice	IP287,	fig	1(f),	
whose	upper	boundary	contains	each	of	the	p/r	trace	
values	as	fractal	cusps.	Above	and	on	the	boundary	
are	discrete	groups,	which	generate	fractal	tilings	of	
the	complement	in	R,	while	values	within	the	slice	
produce	non-free	groups	or	chaotic	non-discrete	sets,	
which	can	genrally	be	portrayed	stochastically,	fig	
6(d),	but	not	by	depth-first	search.		
	
The	rational	cusps	IP273	provide	intriguing	examples	
of	circle	packings	with	deep	links	to	hyperbolic	
geometry.	However,	irrationally	degenerate	space-
filling	limit	sets	remained	enigmatic,	until	a	key	
example	trace	value	was	found	IP314,	named	after	
Troels	Jørgensen,	who	posited	the	existence	of	such	
limit	sets5.	The	solution	is	completely	natural	–	the	
Golden	mean	limit	of	the	Fibonacci	fractions	arising	
from	a	repeated	LR	move	on	the	Farey	tree	(e.g.	
1/1→

L
1/ 2→

R
2 / 3 	etc.	in	fig	1(e))	resulting	in	the	limit	

set	of	fig	3(e).	We	can	approach	such	values	by	use	of	
Newton’s	method	to	solve	the	equations	of	the	
ascending	fractions.	
	
This	leads	on	to	further	cases,	such	as	spiral	
degeneracy	IP320,	where	we	repeat	a	ten	to	one	set	of	
moves,	L10R,	up	the	left	hand	slope	of	the	Maskit	slice	
upper	boundary,	and	into	a	spiraling	sequence	of	
ever	smaller	cusps	in	the	slice,	giving	rise	to	the	limit	
set	of	fig	3(f).	Since	irrational	numbers	are	
uncountable,	such	limit	sets	are	the	overwhelming	
majority	of	cases,	although	harder	to	access.	
	
Double	degeneracy	at	the	Edge	of	Chaos:	The	
above	examples	are	singly	degenerate,	because	only	
half	the	region	is	engulfed,	and	the	question	arises,	is	
it	possible	to	find	a	pair	of	traces	generating	a	limit	
set	which	is	entirely	space-filling,	permeating	the	
complex	plane	with	a	fractal	dimension	of	2?	This	
quest	became	a	mathematical	epiphany	IP331.	It	is	
possible	to	generate	a	limit	set	conjugate	to	Troels’	
example	in	the	following	way.	To	make	a	LR	journey	
down	the	Farey	tree	to	a	higher	Fibonacci	fraction,	
such	as	987/1597,	about	the	middle,	we	find	21/34	
and	13/21.	It	turns	out	that	the	words	in	terms	of	a	
and	B	for	the	limit	sets	corresponding	to	these	two		
steps	also	form	generators	which	can	be	used	in	
reverse	to	define	a	and	B.	If	we	apply	Grandma’s	
algorithm	to	their	traces	calculated	by	matrix	
multiplication	of	the	a	and	B	words,	we	get	another	
limit	set	conjugate	to	the	original,	as	in	fig	4(a).	
	



The	reasoning	that	these	two	midpoint	traces	were	
very	similar	led	to	the	idea	that	a	doubly	degenerate	
limit	set	corresponding	to	the	Golden	mean	might	
arise	from	simply	applying	endless	LR	Farey	moves	

(a,B)→
L
(a,aB)→

R
(a2B,aB) ,	which	leave	the	generators	

unchanged:	(a,	B)	=	(a2B,	aB),	giving	two	equations	
which,	combined	with	Grandfather	and	Markov	leads	
to	the	conjugate	trace	solutions		
(3	±	31/2	i)/2,	as	shown	in	fig	4(b).	
	

	
Fig	4:	(a)	Limit	set	conjugate	to	the	Golden	mean	limit	set.	
(b)	The	doubly	degenerate	space-filling	limit	set	of	fractal	
dimension	2,	coloured	by	the	third	iterate	to	highlight	the	
fractal	line	connecting	centres.	(c)	Figure	8	knot,	whose	3D	
complement	is	glued	from	hyperbolic	3-space	by	(b).	

An	intriguing	feature	is	that,	in	addition	to	a,	b,	there	
is	a	third	induced	parabolic	symmetry	c,	because	the	
(LR)∞	move	must	arise	from	a	Möbius	map	
conjugating	the	limit	set	to	itself,	which	has	the	same	
fixed	point	as	the	parabolic	commutator,	and	
conjugates	with	it,	although	performing	a	distinct	
'translation'	flipping	the	sets	bounding	the	jagged	
line	connecting	the	centres.	Robert	Riley6	has	shown	
that	the	3	transformations	result	in	a	gluing	of	3D	
hyperbolic	space,	via	the	group’s	discrete	3D	‘tiling’,	
to	become	the	3-sphere	with	the	figure	8	knot	(fig	4	
inset)	removed	IP388.	
	

	
Fig	5:	The	‘Holy	Grail’	–	double	spiral	degeneracy,	with	the	
traces	reversed	in	the	second	image.	The	convergence	to	
space-filling	is	very	slow	and	the	full	resolution	image	took	
29	hours	in	generic	C	and	would	have	taken	112	days	in	
interpreted	Matlab	code.	Although	the	traces	are	no	longer	

conjugates,	the	sets	are	clearly	degenerate	on	both	
complement	components	in	the	same	way	as	in	fig	4.	

	
To	unravel	the	spirally	degenerate	case,	I	examined	
the	recursive	relations	from	the	endless	(L10R)	∞	
move	and	found	they	could	be	exploited	to	produce	a	
pair	of	traces	by	solving	a	system	of	11	equations:	
Ta	=	1.936872603726	+	0.021074052017i,	and	

Tb	=	1.878060670271	–	1.955723310188i.	When	
these	are	input	into	the	DFS	algorithm,	we	have	the	
double	spiral	degeneracy	shown	in	fig	5.	
	
The	Bondage	of	Relationships:	There	is	a	further	
enchanting	collection	of	limit	sets	IP353,	where	the	
group	is	non–free	and	has	a	commutator	that	squares	
to	the	identity	–	(aba–1b–1)2	=	I.	This	causes	the	trace	
to	be	0,	but	an	extended	grandma’s	algorithm	IP261	
applies,	the	recursive	relations	(2)	and	(3)	can	be	
solved	to	give	a	polynomial,	and	the	limit	sets	can	be	
depicted	by	DFS,	as	long	as	generator	words	that	
short-circuit	to	the	identity	are	treated	as	dead-ends.		
	
This	requires	an	automatic	group	–	involving	a	look-
up	table	(automaton)	where	all	the	growing	word	
strings	that	could	end	in	a	short-circuit,	as	we	
descend	the	search	tree,	are	accounted,	by	iteratively	
composing	their	states	and	exiting	when	a	death	
state	is	reached.	In	fig	6(a-c),	are	three	such	limit	
sets,	with	the	“inner”	regions	highlighted	in	yellow	to	
distinguish	them	from	the	complementary	white	
regions,	from	which	they	are	isolated	by	the	limit	set.		
	

	
Fig	6:	Non-free	limit	sets,	(a)	Ta(1/60)	Tb=2	,	(b)	a	quasi-
Fuchsian	“dragon”	(c)	L10R	spirally	degenerate.	(d):	A	

succession	of	non-free	and	non-discrete	chaotic	limit	sets	
where	Ta	=	Tb	=	2	under	a	varying	commutator	trace,	using	

the	stochastic	algorithm.	
	
Falling	into	the	Chaotic	Abyss:	One	can	also	freely	
explore	the	wilder	limit	sets,	using	the	stochastic	
algorithm,	which	recursively	maps	chosen	points,	
such	as	Möbius	transformation	fixed	points,	using	a	
random	sequence	of	the	four	generators.	This	can	
visualize	limit	sets	in	lower	fidelity	without	any	
restriction,	including	non-free,	and	non-discrete	
chaotic	systems,	as	illustrated	in	fig	6(d).	
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