
STATIONARY STATES or wave patterns, associated
with the energy levels of a Rydberg atom (a highly excited hydrogen
atom) in a
strong magnetic field can exhibit chaotic qualities.
The states shown in the left two images seem regular, the right
two are chaotic. In
the third picture the state lies mostly along
a periodic orbit; in the fourth, it does not and is difficult
to interpret, except for the four

mirror symmetries with respect
to the vertical horizontal and two diagonal lines.

Quantum Chaos 
Martin Gutzwiller Scientific American Jan 92

In 1917 Albert Einstein wrote a paper that was completely ignored
for 40 years. In it he raised a question that
physicists have
only, recently begun asking themseves: What would classical chaos,
which lurks everywhere
in our work do to quantum mechanics. the
theory describing the atomic and subatomic worlds? The effects
of
claccical chaos, of course, have long been observed-Kepler
knew about the motion of the moon around the
earth. and Newton
complained bitterly about the phenomenon. At the end of the 19th
century the American
astronomer William Hill demonstrated that
the irregularity is the reswt entirelly of the gravitational pull
of
the sun. So thereafter, the great French mathematician-astronomer-physicist
Henri Poincare surmised that the
moon's motion is only mild case
of a congenital disease affecting nearlly everything. In the long
run Poincare
realized, most dynamic systems show no discernible
regularity or repetitive pattern. The behavior of even a
simple
system can depend so sensitively on its initial conditions that
the final outcome is uncertain. At about
the time of Poincare's
seminal work on classical chaos, Max Planck started another revolution,
which would
lead to the modern theory of quantum mechanics. The
simple systems that Newton had studied were
investigated again,
but this time on the atomic scale. The quantum analogue of the
humble pendulum is the
laser; the flying cannonballs of the atomic
world consist of beams of protons or electrons, and the rotating
wheel is the spinning electron (the basis of magnetic tapes).
Even the solar system itself is mirrored in each of
the atoms
found in the periodic table of the elements. Perhaps the single
most outstanding feature of the
quantum world is its smooth and
wavelike nature. This feature leids to the question of how chaos
makes itself
felt when moving from the classical world to the
quantum world. How can the extremelly irregular character
of classical
chaos be reconciled with the smooth and wavelike nature of phenomena
on the atomic scale?
Does chaos exist in the quantum world'? Preliminary
work seems to show that it does. Chaos is found in the
distribution
of energy levels of certain atomic systems; it even appears to
sneak into the wave patterns
associated with those levels. Chaos
is also found when electrons scatter from small molecules. I must
emphasize, however, that the term 'quantum chaos' serves more
to describe a conundrum than to define a
well-posed problem.

Considering the following interpretation of the bigger picture
may be helpful in coming to grips with
quantum chaos. All our
theoretical discussions of mechanics can be somewhat artificially
divided into three
compartments [see illustration ] although nature
recognizes none of these divisions. Elementary classical
mechanics
falls in the first compartment. This box contains all the nice,
clean systems exhibiting simple and
regular behavior, and so I
shall call it R, for regular. .Also contained in R is an elaborate
mathematical tool
called perturbation theory which is used to
calculate the effects of small interactions and extraneous
disturbances,
such as the influence of the sun on the moon's motion around the
earth. With the help of
perturbation theory, a large part of physics
is understood nowadays as making relatively mild modifications
of regular systems. Reality though, is much more complicated;
chaotic systems lie outside the range of
perturbation theory and
they constitute the second compartment. Since the first detailed
analyses of the
systems of the second compartment were done by
Poincare, I shall name this box P in his honor. It is stuffed
with the chaotic dynamic systems that are the bread and butter
of science. Among these systems are all the
fundamental problems
of mechanics, starting with three, rather than only two bodies
interacting with one



another, such as the earth, moon and sun,
or the three atoms in the water molecule, or the three quarks
in the
proton. Quantum mechanics, as it has been practiced for
about 90 years, belongs in the third compartment,
caned Q. After
the pioneering work of Planck, Einstein and Niels Bohr. quantum
mechanics was given its
deftnitive form in four short years, starting
in 1924. The seminal work of Louis de Brogbe, Werner
Heisenberg,
Erwin Schrodinger, Max Born, Wolfgang Pauli and Paul Dirac has
stood the test of the
laboratory without the slightest lapse.
Miraculously. it provides physics with a matheniatical framework
that,
according to Dirac, has yielded a deep understanding of
'most of phlsics and all of chemistry" Nevertheless,
even
though most physicists and chemists have learned how to solve
special probleins in quantum mechanics,
they have yet to come
to terms with the incredible subtleties of the field. These subtleties
are quite separate
from the difficult, conceptual issues having
to do with the interpretation of quantum mechanics. The three
boxes R (classic, simple sytems), P (classic chaotic systems)
and Q (quantum systems) are linked by several
connections. The
connection between R and Q is known as Bohr's correspondence principle.
The
correspondence principle claims, quite reasonably, that classical
mechanics must be contained in quantum
mechanics in the limit
where objects become much larger than the size of atoms- The main
connection
between R and P is the Kolmogorov- Arnold-.Moser (KAM)
theorem. The KAM theorem provides a
powerful tool for calculating
how much of the structure of a regular system survives when a
small
perturbation is introduced, and the theorem can thus identify
perturbations that cause a regular system to
undergo chaotic behaviour.
Quantum chaos is concerned with establishing the relation between
boxes P
(chaotic systems and Q (quantum systems). In establishing
this relation, it is useful to introduce a concept
called phase
space. Quite amazingly this concept, which is now so widely exploited
by experts in the field of
dynamic systems, dates back to Newton.
The notion of phase space can be found in Newton's mathematical
Principles of Natural Philosophy published in 1687. In the second
definition of the first chapter, entitled
'Definitions,"
Newton states (as translated from the original Latin in 1729):
The quantity of motion is the
measure of the same, arising from
the velocity and quantity of matter conjointly" In modern
English this
means that for every object there is a quantity.
called momentum, which is the product of the mass and
velocity
of the object. Newton gives his laws of motion in the second chapter,
entitled 'Axioms, or Laws of
motion.' The second law says that
the change of motion is proprotional to the motive force impressed.
Newton relates the force to the change of momentum (not to the
acceleration as most textbooks do).

Momentum is actually one of two quantities that, taken together,
yield the complete information about a
dynamic system at any instant
The other quantity is simply position. which determines the strength
and
direction of the force. Newton's insight into the dual nature
of momentum and position was put on firmer
ground some 130 years
later by two mathematicians, William Rowan Hamilton and Karl Gustav-
Jacob
Jacobi. The pairing of momentum and position is no longer
viewed in the good old Euclidean space or three
dimensions; instead
it is viewed in phase space, which has six dimensions, three dimensions
for position and
three for momentum The introduction of phase
space was a powerful step from a mathematical point of view,
but
it represents a serious setback from the standpoint of human intuition.
Who can visualize six
dimensions?',' In some cases fortunately
phase space can be reduced to three or even better, two dimensions.
Such a reduction is possible in examining the behaxior of a hydrogen
atom in a strong magnetic field. The
hydrogen atom has long been
a highily desirable system because of its simplicity. A lone electron
moves
around a lone proton. And yet the classical motion of the
electron becomes chaotic when the magnetic field is
turned on.
How can we claim to understand physics if we cannot explain this
basic problem?

POINCARE SECTION OF A HYDROGEN ATOM in a strong
magnetic field has regions where 
the points of the electron's trajectory scatter wildly, indicating
chaotic behavior. The section 



is a slice out of phase space, an abstract six-dimensional space:
the usual three for the 
position of a particle and an additional three for the particle's
momentum.

Under normal conditions, the electron of a hydrogen atom is
tightly bound to the proton. The behavior of the
atom is governed
by quantum mechanics. The atom is not free to take on any arbitrary
energy, it can take on
only discrete, or quantized, energies.
At low energies, the allowed values are spread relatively far
apart. As
the eneri,,)- of the atom is increased, the atom grows
bigger, because the electron moves farther from the
proton, and
the allowed energies get closer together. At high enough energies
(but not too high. or the atom
will be stripped of its electron!),
the allowed energies get very close together into what is effectively
a
continuum, and it now, becomes fair to apply the rules of classical
mechanics. Such a highly excited atom is
called a Rydberg atom.
Rydberg atoms inhabit the middle ground between the quantum and
the classical
worlds, and they are therefore ideal candidates
for exploring Bohr's correspondence principle which connects
boxes
Q (quantum phenomena) and R (classic phenomenal. If a Rydberg
atom could be made to exhibit
chaotic behavior in the classical
sense, it might provide a clue as to the nature of quantum chaos
and thereby
shed light on the middle ground between boxes Q and
P (chaotic phenomena. A Rdberg atom exhibits chaotic
behaviour
in a strong magnetic field, but to see this behavior we must reduce
the dimension of the phase
space. 'The first step is to note that
the applied magnetic field defines an axis of symmetry through
the atom.
The motion of the electron takes place effectively in
a two-dimensional plane, and the motion around the axis
can be
separated out; ornly the distances along the axis and from the
axis matter. The symmetty of motion
reduces the dimension of the
phase space from six to four. Additional help comes from the fact
that no
outside force does any work on the electron. As a consequence,
the total energy does not change with time.
By focusing attention
on a particular value of the energy, one can take a three-dimensional
slice-called an
energy shell-out of the four-dimensional phase
space. The energy shell allows one to watch the twists and
turns
of the electron, and one can actually see something resembling
a tangled wire sculpture. The resulting
picture can be simplffied
even further through a simple idea that occurred to Poincare.
He suggested taking a
fixed two-dimensional plane (called a Poincare
section, or a surface of section) through the energy shell and
watching the points at which the trajectory intersects the surface.
The Poincare section reduces the tangled
wire scwpture to a sequence
of points in an ordinary plane. A Poincare section for a highly
excited hydrogen
atom in a strong magnetic field is shown on the
opposite page. The regions of the phase space where the
points
are badly scattered indicate chaotic behavior. Such scattering
is a clear symptom of classical chaos,
and it aflows one to separate
systems into either box P or box R.

What does the Rydberg atom reveal about the relation between
boxes P and Q? I have mentioned that one of
the trademarks of
a quantum mechanical system is its quantized energy levels, and
in fact the energy levels
are the first place to look for quantum
chaos. Chaos does not make itself felt at any particular energy
level,
however; rather its presence is seen in the spectrum, or
distribution, of the levels. Perhaps somewhat
paradoxically in
a nonchaotic quantum system the energy levels are distributed
randomly and without
correlation, whereas the energy levels of
a chaotic quantum system exhibit strong correlations [see
illustration]
The levels of the regular system are often close to one another,
because a regular system is
composed of smaller subsystems that
are completely decoupled. The energy levels of the chaotic system,
however, almost seem to be aware of one another and try to keep
a safe distance. A chaotic sytem cannot be
decomposed; the motion
along one coordinate axis is always coupled to what happens along
the other axis.

MECHANICS is traditionally (and artificially)
divided into the three compartments depicted here, 
which are linked together by several connections. Quantum chaos
is concerned 

with establishing the relation between boxes P and Q.

The spectrum of a chaotic quantum system was first suggested
by Eugene P. Wigner, another early master of
quantum mechanics.
Wigner observed, as had many others, that nuclear physics does
not possess the safe



underpinnings of atomic and molecular physics:
the origin of the nuclear force is still not clearly understood.
He therefore asked whether the statistical properties of nuclear
spectra could be derived from the assumption
that many parameters
in the problem have definite, but unknown values. This rather
vague starting point
allowed him to find the most probable formula
for the distribution. Oriol Bohigas and Marie-Joya Giannoni
of
the Institute of Nuclear Physics in Orsay France, first pointed
out that Wigner's distribution happens io be
exactly what is found
for the spectrum of a chaotic dynamic system.

ENERGY SPECTRUM or distribution of energy levels,
differs markedly between chaotic and 
nonchaotic quantum systems. For a nonchaotic system such as a
molecular hydrogen ion (H2+), 

the probability of finding two energy levels close to each other
is quite Wgh. In the case of a 
chaotic system such as a Rydberg atom in a strong magnetic field,
the probability is low. The chaotic
spectrum closely matches the typical nuclear spectrum derived
many years ago by Eugene P. Wigner.

Chaos does not seem to limit itself to the distribution of
quantum energy levels, however, it even appears to
work its way
into the wavelike nature of the quantm world. The position of
the electron in the hydrogen atom
is described by a wave pattern.
The electron cannot be pinpointed in space; it is a cloudlike
smear hovering
near the proton. Associated with each allowed energy
level is a stationary state, which is a wave pattern that
does
not change with time. A stationary state corresponds quite closely
to the vibrational pattemrn of a
membrane that is stretched over
a rigid frame, such as a drum. The stationary states of a chaotic
system have
surprisingly interesting structure, as demonstrated
in the early 1980s by Eric Heller of the University of
Washington.
He and his students calculated a series of stationary states for
a two-dimensional cavity in the
shape of a stadium. The corresponding
problem in classical mechanics was known to be chaotic, for a
typical
trajectory quickly covers most of the avai;able ground
quite evenly. Such behavior suggests that the
stationary states
might also look random, as if they had been designed without rhyme
or reason. In contrast.
Heller discovered that most stationary
states are concentrated around narrow channels that form simple
shapes inside the stadium, and he called these channels "scars"
[see illustration]. Similar structure can also be
found in the
stationery states of a hydrogen atom in a strong magnetic field
[see illustration] The smoothness
of the quantum wave forms is
preserved from point to point, but when one steps back to view
the whole
picture, the fingerprint of chaos emerges. It is possible
to connect the chaotic signature of the energy
spectrum to ordinary
classical mechanics. A clue to the prescription is provided in
Einstein's 1917 paper, He
examined the phase space of a regular
system from box R and described it geometrically as filled with
surfaces in the shape of a donut; the motion of the system corresponds
to the trajectory of a point over the
surface of a particular
donut. The trajectory winds its way around the surface of the
donut in a regular
manner, but it does not necessarily close on
itself. In Einstein's picture, the application of Bohr's
correspondeice
principle to find the energy levels of the analogous quantum mechanical
system is simple.
The only trajectories that can occur in nature
are those in which the cross section of the donut encloses an
area equal to an integral multiple of Planck's constant, h (2pi
times the fundamental quantum of angular
momentum having the units
of momentum multiplied by length). It tums out that the integral
multiple is
precisely the number that specifies the corresponding
energy level in the quantum system Unfortimately as
Einstein clearly
saw, his method cannot be applied if the system is chaotic, for
the trajectory does not lie on a
donut and there is no natural
area to enclose an integral multiple of Planck's constant. A new
approach must
be sought to explain the distribution of quantum
mechanical energy levels in terms of the chaotic orbits of
classical
mechanics. Which features of the trajectory of classical mechanics
help us to understand quantum
chaos? Hill's discussion of the
moon's irregular orbit because of the presence of the sun provides
a clue. His
work represented the first instance where a particular
periodic orbit is found to be at the bottom of a difficult
mechanical
problem. (A periodic orbit is tike a closed track on which the
system is made to run: there are
many of them, although they are
isolated and unstable.) Inspiration can also be drawn from Poincare,
who
emphasized the general importance of periodic orbits. In the
begining of his three-volume work-, The New



Methods of Celestial
Mechanics" which appeared in 1892, he expresses the belief
that periodic orbits 'offer
the only opening through which we
might penetrate into the fortress that has the reputation of being
impregnable." Phase space for a chaotic system can be organized,
at least partially around periodic orbits,
even though they are
sometimes quite difficult to find.

ABSORPTION OF LIGHT by a hydrogen atom in a strong
magnetic field appears to vary randomly 
as a function of energy (top), but when the data are anallzed
according to the mathematical procedure 

called Fourier analysis, a distinct pattern emerges (bottom).
Each peak in the bottom panel 
has associated with it a specific classical periodic orbit.

In 1970 I discovered a very general way to extract information
about the quantum mechanical spectrum from
a complete enumeration
of the classical periodic orbits. The mathematics of the approach
is too difficult to
delve into here, but the main result of the
method is a relatively simple expression called a trace formula.
The
approach has now been used by a number of investigators, including
Michael V. Berry of the University of
Bristol, who has used the
formula to derive the statistical properties of the spectrum.
I have applied the trace
formula to compute the lowest two dozen
energy levels for an electron in a semiconductor lattice, near
one of
the carefully controlled impurities. (the serriicondoctor,
of course, is the basis of the marvellous devices on
which modern
life depends; because of its impurities, the electrical conductivity
of the material is half-way
between that of an insulator, such
as plastic, and that of a conductor, such as copper.) The trajectory
of the
electron can be uniquely characterized by a string of symbols,
which has a straightforward interpretation. The
string is produced
by defining an axis through the semiconductor and simply noting
when the trajectory
crosses the axis. A crossing to the "positive"
side of the axis gets the symbol +, and a crossing to the
'negative"
side gets the symbol -. A trajectory then looks exactly like the
record of a coin toss. Even if the
past is known in all detail
even if all the crossings have been recorded-the future is still
wide open. The
sequence of crossings can be chosen arbitrarily.
Now, a periodic orbit consists of a binary sequence that
repeats
itself; the simplest such sequence is (+ -), the next is (+ -),
and so on (Two crossings in a row having
the same sign indicate
that the electron has been trapped temporarily.) All periodic
orbits are thereby
enumerated, and it is possible to calculate
an appropriate spectrum with the help of the trace formula. In
other
words, the quantum mechanical energy levels are obtained
in an approximation that relies on quantities from
classical mechanics
only. The dassical periodic orbits and the quantum mechanical
spectrum are closely
bound together through the mathematical process
called Fourier analyis. The hidden regularities in one set,
and
the frequencies with which they show up, are exactly given by
the other set. This idea was used by John
B. Delos of the College
of William and Mary and Dieter Wintgen of the Niax Planck Institute
for Nuclear
Physics in Heidelberg to interpret the spectrum of
the hydrogen atom m a strong magnetic field. Experimental
work
on such spectra has been done by Karl H. Welge and his colleagues
at the University of Bielefeld, who
have excited hydrogen atoms
nearly to the point of ionization where the electron tears itself
free of the
proton. The energies at which the atoms absorb radiation
appear to be quite random [see illustration], but a
Fourier analysis
converts the jumble of peaks into a set of well-separated peaks.
The important feature here is
that each of the well-separated
peaks corresponds precisely to one of several standard classical
periodic
orbits. Poincare's insistence on the iinportance of periodic
orbits now takes on a new meaning. Not only does
the classical
organization of phase space depend critically on the classical
periodic orbits, but so too does the
understanding of a chaotic
quantum spectrum.



PARTICLE IN A STADIUM-SHAPED BOX has chaotic stationary
states with associated 
wave patterns that look less random than one might expect. Most
of the states are 

concentrated around narrow channels that form simple shapes, called
scars.

So far I have talked only about quantum systems in which an
S electron is trapped or spatially confined.
Chaotic effects are
also present in atomic systems where an electron can roam freelly,
as it does when it is
scattered from the atoms in a molecule.
Here energy is no longer quantized, and the electron can take
on any
value, but the effectiveness of the scattering depends
on the energy. Chaos shows up in quantum scattering as
variations
in the amount of time the electron is temporarily caught inside
the molecule during the scattering
process. For simplicity the
problem can be eexamined in two dimensions. To the electron, a
molecule
consisting of four atoms looks like a small maze. When
the electron approaches one of the atoms, it has two
choices:
it can turn left or right. Each possible trajectory of the electron
through the molecule can be recorded
as a series of left and right
turns around the atom. until the particle finally emerges. All
of the trajectories are
unstable: even a minute change in the
energy or the initial direction of the approach will cause a large
change
in the direction in which the electron eventually leaves
molecule. The chaos in the scattering process comes
from the fact
that the number of trajectories increases rapidly with path length.
Only an interpretation From
the quantum mechanical point of view
gives reasonable results; a purely classical calculation yields
nonsensical results. In quantum mechanics each classical trajectory
is used to deftne a little wavelet that finds
its way through
the molecule. The quantum mechanical result follows from simply
adding up all such
wavelets. Recently I have done a calculation
of the scattering process for a special case in which the sum
of
the wavelets is exact An electron of known momentum hits a
and emerges with the same momentum The
arriarrival time for the
electron to reach a fixed monitoring station varies as a function
of the momentum and
the way in which it varies is so fascinating
about this problem. The arrival time fluctuates over small changes
in the momentum but over large changes a chotic imprint emerges
which never settles down to any simple
pattern [see illustration].

TRAJECTORY OIF AN ELECTRON
through a molecule during scattering can be recorded as a series
of 
left and right turns ,around the atoms making up the molecule
(left). Chaotic variation (right) 

characterizes the time it takes for a scattered electron of known
momentum to reach a fixed monitoring
station. Arrival time varies as a function of the electron's momentum.
The variation is smooth when 

changes in the momentum are small but exhibits a complex chaotic
pattern when the changes are large. 
The quantity-shown on the vertical axis the phase shift, is a
measure of the time delay.

A particularly tantalizing aspect of the chaotic scattering
process is that it may connect the mysteries of
quantum chaos
with the mysteries of number theory. The calculation of the time
delay leads straight into what
is probably the most enigmatic
object in mathematics, Riemann's zeta function.

PRIME
TIME Fame and fortune await the person who cracks
the greatest problem in
mathematics. And that could be any day
now, says Erica Klarroich

Actually it was first emploed by Leonhard Euler in the middle
of the 18th century to show the existence of an
infinite number
of prime numbers (integers that cannot be divided by any smaller
integer other than one).
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About a century later Bernhard Riemann,
one of the founders of modem mathematics, employed the function
to delve into the distribution of the primes. in his only paper
on the subject, he called the function by the
Greek letter zeta.
The zeta function is a function of two variables, x and y which
exist in the complex plane).
To understand the distribution of
prime numbers, Riemann needed to know when the zeta function has
the
value of zero. W'ithout giving a valid argument, he stated
that it is zero only when x is set equal to 1/2. Vast
calculations
have shown that he was right without exception for the first billion
zeros, but no mathematician
has come even close to providing a
proof. If Riemann's conjecture is corrcct, all kinds of interesting
properties of prime numbers could be proved. The values of y for
which the zeta function is zero form a set of
numbers that is
much like the spectrum of energies of an atom. Just as one can
study the distribution of
energy levels in the spectrum so can
one study the distribution of zeros for the zeta function. Here
the prime
numbers play the same role as the classical closed orbits
of the hydrogen atom in a magnetic field: the primes
indicate
some of the hidden correlations among the zeros of the zeta function.
In the scattering problem the
zeros of the zeta function give
the values of the momentum where the time delay changes strongly.
The chaos
of the Riemann zeta function is particularly apparent
in a theorem that has only recently been proved: the zeta
function
fits locally any smooth function. The theorem suggests that the
function maydescribe all the chaotic
behavior a quantum system
can exhibit. If the mathematics of quantum mechanics could be
handled more
skilfully, many examples of locally smooth, yet globally
chaotic, phenomena might be found.

Chaotic (magenta) and periodic (cyan) trajectories
of an electron through a crystal lattice are contrasted over
the wave functions of the lattice (the atoms are the dark ovals).
In quantum-confined systems the chaotic

trajectories may be eventually quasi-periodic i.e. chaotic orbits
may over time become trapped in periodic
solutions. Once we release the confinement of the electron, either
to a single wave function or to an ordered
crystal, as is the case in kinetic interactions in a non-crystalline
molecular medium, this quantum break time

to periodicity may never become realized explaining the perseverence
of chaotic orbits.

Where Two Worlds Meet Julian
Brown New Scientist 16 May 96

TWICE in 20th-century physics, the notion of unpredictability
has shaken scientists' view of the Universe.
The first time was
the development of quantum mechanics, the theory that describes
the behaviour of matter
on an atomic scale. The second came with
the classical phenomenon of chaos In both areas unpredictable
features changed scientists understanding of matter in ways that
were totally unforeseen. How ironic then,
that these two fields,
which have something so fundamental in common, should end up as
antagonists when
combined. For by rights, chaos should not exist
at all in quantum systems- the laws of quantum mechanics
actually
forbid it. Yet recent experiments seem to show the footprints
of quantum chaos in remarkable
swirling patterns of atomic disorder.
These intriguing patterns could illuminate one of the darkest
corners of
modern physics: the twilight zone where the quantum
and classical worlds meet. The quantum theory is one
of the most
successful theories in modern science.

Developed in the 1920s, it accounts for a vast range of phenomena
from the nature of chemical bonds to the
behaviour of subatomic
particles, making predictions that have been tested to unprecedented
levels of
accuracy. But at its core there are troublesome features:
Prominent among them is Heisenberg's uncertainty
principle-if
you know the speed of a quantum particle, for instance, you can
never know its exact location.
The notion that some aspects of
nature are simply unknowable has caused sleepless nights for more
than a
few physicists. Chaos is a younger discipline. Although
some of its conceptual elements had already been
appreciated by
Leibnitz in the 17th century and Poincare in the 19th century,
chaos theory did not become
fashionable until the 1980s when scientists
began to realize that the phenomenon is widespread in the natural
world. it arises when a system is unusually sensitive to its initial
conditions so that a small perturbation of the
system changes
its subsequent behaviour in a way that grows exponentially with
time. Chaos has been



observed in, among other things, pendulums,
the growth of populations, planetary dynamics, and weather
systems.
Probably the most famous example of chaos is the so-called "butterfly
effect" in which, in theory,
the tiny air disturbance from
the flapping of a butterfly's wings can ultimately lead to a dramatic
storm. of
course, although both these theo.ries place fundamental
limits on what we can know about/the world, the
unpredictabilities
in quantum theory and chaos are different in kind. But the particular
problem with quantum
chaos is that in quantum mechanics small
perturbations generally only lead to small perturbations in
subsequent
states. Without the exponential divergence in evolutionary paths,
it is difficult to see how there
can be any chaos. This behaviour
of quantum systems is often attreibuted to a special property
of the
quantlani equations: their linearity.

Semi-classical description of the stadium illustrates
how a wavelet, unlike the classical trajectories
begins to display
periodic behaviour as a result of the overlapping superposition
of wavelets, which
unlike classical trajectories cannot densely
fillphase space without overlapping.

An everyday example of linearity can be seen in a rubber band.
When it is
stretched a little the extension is proportional to
the force. Nonlinearity steps in
when you pull too far and the
band reaches its limit of elasticity. Stretch even
further and
it snaps. Because nonlinearity is known to be a crucial ingredient
in
ch,iotic systems. it is often said that quantum mechanics cannot
be chaotic

because it is linear. But according to Michael Berry, a leading
theorist in the
study of quantum chaos at the University of Bristol,
this issue of linearity is a
red herring. "This is one of
the biggest misconceptions in the business he says.
Berry's preferred
explanation for the difference between what happens in
classical
and qtiaiitum systenis as they edge towards chaos is that quantum
uncertainty iniposes a fundamental limit on the sharpness of the
dynamics. The
ammount of uncertainty is quantified in Heisenberg's
uncertainty principle by a

fixed value known as Planck's constantIn
classical mechanics, objects can move along infinitely many
trajectories,"
says Berry. This makes it easy to set up complicated dynamics
in which an object will never
retrace its path-the sort of beliaviour
that leads to chaos. But in quantum mechanics, Planck's constant
blurs
out the fine detail, smoothing away the chaos."

This raises some interesting questions. What happens if you
scale down a classically chaotic system to atomic
size? Do you
still get chaos or does quantum regularity suddenly prevail'?
Or does someting entirely new
happen? And why is it that macroscopic
systems can be chaotic, given that ultimately everything is made
out
of atoms and therefore quantum in nature? These questions
have been the subject of intense debate for more
than a decade.
But now a number of experimental approaches have begun to offer
answers.

Scrambled spectra

One of the earliest clues came from investigations of atomic
absorption spectra. If an atom absorbs a photon
of light it is
possible for one of its electrons to be kicked into a higher energy
state. Normally, an atom's
energy levels are spaced at mathematically
regular intervals, accounted for by aii empirical formula given
19th cent physicist Johannes Rydberg. If an atom absorbs photons
with different energies, electrons are
kicked into different levels,
and the result is a nice tidy absorbtion spectrum whose details
are characteristic
of the chemical element involved. But when
the atom is subjected to a magnetic field the line structure of
the
spectrum becomes distorted. When the field is sufficiently
intense the spectrum becomes so scrambled it
looks pretty much
random at higher energies. The phenomenon is easier to understand
in classical rather than
quantum mechanical terms. Viewed classically,
atomic electrons movbe in orbits around the nucleus rather
like
planets round the Sun. A magnetic field, though, introduces an
additional force which causes the
electrons to swerve from their
normal trajectories. It's rather like a stray star encroaching
upon the Solar
System. If it got sufficiently close the gravitational
pull would at some point become comparable to the pull
between
the Earth and our sun. At this moment the earth would find itself
in a tug-of-war between the sun
and the interloping star. Such
a system would very probably be unstable, with the Earth switching
critically
between orbits around the sun and the other star. The
result would be a chaotic orbit. In the case of excited
atoms,
for small fields and lower energy states. The electromagnetic
swerving is small compared with the
electrostatic pull towards
the nucleus and the electron continues to follow a stable orbit.
But for strong fields
and highly excited states where the electron
is on average very much further away from the nucleus,the
swerving
force becomes comparable to the inward pull of the nucleus In
this situation, according to vclassical



predictions, the motion
ought to be chaotic. The effect was first studied back in 1969
by two astronomers
Garton and Tonkins of Imperial College, London,
who wanted to find out how the spectra of stars would be
affected
by their powerful magnetic fields. Their experiments on barium
atoms produced one of the first
surprisesbecause their resulting
spectrum still displayed considerable regularity. A grioup at
the University of
Bielefield in Germany repeated the experiments
in the 1980s using higher resolution equipment. Although the
randomness
was more apparent in their spectra, it was still clear that quantum
mechanics was in some strange
way superimposing its own order
on the chaos.

Quantum billiards

More recently, signs of quantum suppression of chaos have come
from anotheianother experimental approach
to quantum chaos: quantum
billiards. OOn a conventional billiard table it is quite common
for a player to pot
a ball by bouncing the cue ball off the cushion
first. In the hands of a skilled player, such shots are often
quite
repeatable. But if you were to try the saine shot on a rounded,
stadium-shaped table, the results are far less
predictible: the
slightest change in starting position alters the ball's trajectory
drastically. So what you get if
you play stadium billiards is
chaos. In 1992 at Boston's Northeastern University, Srinivas Sridhar
and
colleagues substituted microwaves for billiard balls and a
shallow stadium-shaped copper cavity for the table.
Sridhar's
team then observed how the microwaves settled down inside the
cavity. Although their apparatus is
not of atomic proportions
(a cavity typically measures several millimetres across the experiment
exploits the
precise similarity between the wave equations of
quantum mechanics and the equations of the
electromagnetic waves
in this two-dimensional situation. If microwaves behaved like
billiard balls, you
would not expect to see any regular patterns.
The experiments, however, reveal structures known its "scars"
that suggest the waves concentrate along particular paths. But
where do these paths come from? One answer
is provided by theoretical
work carried out back in the 1970s by Martin Gutzwiller of of
the IBM Thomas
Watson Center in Yorktown Heights near New York.
He produced a key formula that showed how classical
chaos might
relate to quantum chaos. Basically it indicates that the quantum
regularities are related to a very
limited range of classical
orbits. These orbits are ones that are periodic in the classical
system. If, for
example, you placed a ball on the stadium table
and hit it along exactly the right path, you could get it to
retrace
its path after only a few bounces off the cushions. however, because
the system is chaotic these orbits
are unstable. You only need
a minuscule error and the ball will move off course within a few
bounces. So
classically you would not expect to see these orbits
stand out. But thanks to the uncertainty in quantum
mechanics,
which "frizzes" the trajectories of the balls, tiny
errors become less significant and the periodic
orbits are reinforced
in some strange way so that they predominate. Sridhar's millimetre-sized
stadium was a
good analogy for quantum behaviour, but would the
same effects occur in a truly quantum-sized system? This
question
was answered recently by Laurence Eaves from the University of
Nottingham, and his colleagues at
Nottingham and at Tokyo University.
Eaves conducted his game of quantum billiards inside an elaborate
semiconductor "sandwich". He used electrons for balls,
and for cushions he used a combination of quantum
barriers and
magnetic fields. The quantum barriers are formed by the outer
layers of the sandwich, which
gives the electrons a couple of
straight edges to bounce back and forth between, The other edges
of the table
are created by the restraining effect of the magnetic
field, which curves the electron motion in a complicated
way.
As in Sridhar's stadium cavity, the resulting dynamics ought to
be chaotic.

Number crunching

To do the exeriments, Eaves needed ultra-intense magnetic fields,
so he took his device to the High Magnetic
Field Laboratory at
the University of Tokyo, which is equipped with some of the most
powerful sources of
pulsed magnetic fields in the world. Meanwhile
his colleagues in Noitingham, Paul Wilkinson, Mark
Fromhold and
Fred Sheard, squared up to a heroic series of calculations, deducing
from purely quantum
mechanical principles what the results should
look like. In a spectacular pape that made the cover of Nature
last month, the team produced the first definitive evidence for
quantum scarring, and precisely confirmed the
quantum mechanical
predictions. Sure enough, the current flowing through the device
was predominantly
carried by electrons moving in certain 'scarred'
paths. Quantum regularity was lingering in the chaos rather
like
the smile of the Cheshire cat in Alice's adventures in wonderland.

In case these ideas seem academic it is worth noting that quantum
chaos could play an important role in the
design of future seniiconductor
devices. At the moment, transistor devices on silicon chips are
still large
enough for the electrons to move through them diffusively
like molecules in a gas. But as chip manufacturers
squeeze ever
more logic gates onto silicon, says Eaves, in the next is years
transistors may become so small



that electrons will instead flow
through them more like quantum billiard balls. "At this point,
we may well
need the principles of quantum chaos to understand
how these devices will work," lie says. But where does
that
leave the problem of how quantum mechanics turns into the classical
world on larger scales? One way of
looking at the problem is to
investigzite how a quantum chaos system actually evolves with
time. Last
December, Mark Raizen and his colleagues at. the University
of Texas managed to do just that, using an
experimental version
of a quantum kicked rotor. The idea is to couple two oscillating
systems to produce
chaos. Imagine pushing a child's swing. If
you time your pushes in rhythm with

the swing, then it simply rises higher and higher. if you push
at a different frequency, the swing will
sometimes be given a
boost and sometimes slowed down. if this is done too vigorously,
the oscillations
become chaotic. In Raizen's quantum version,
ultra-cold sodium atoms were subjected to a special kind of
pulsed
laser light. The laser beam was bounced between mirrors to set
up a short-lived standing wave-a
periodic lattice of light that
remains motionless in space rather like the acoustic nodes on
a violin string.
Depending on their precise location in the standing
waves, the sodium atoms are pushed around by the
magnetic fields
in the lattice. According to classical calculations, the result
is that the atoms should be kicked
chaotically along an increasingly
energetic random walk. Raizen's results confirmed a long- standing
prediction of the quantum theoretical descriptions of these systems.
The atoms did indeed move in a chaotic
way to begin with. But
after around 100 microseconds (which corresponds to around 50
kicks) the build-up in
energy reached a plateau.

Break time

In other words. quantum mechanics does suppress the chaos but
only after a certain amount of time known as
the 'quantum break
time'. This turns out to be the crucial feature that distinguishes
between quantum and
classical predictions of chaotic systems.
Before the break time, quantum systems are able to mimic the
behaviour
of classical systems by looking essentially random. But after
the break time, the system simply
retraces its path. it is no
longer random, but akin to a repeating loop, albeit of considerable
complexity. But if
this is right, how can classical systems exhibit
chaos? Macroscopic objects such as pendulums and planets
are,
after all, made out of atoms and are therefore, ultimately, quantum
systems. it turns out that classical
systems are in fact behaving
exactly like quantum systems. The only difference is that for
classical systems,
the quantum break times of macroscopic systems
are extraordinarily long-far longer than the age of the
Universe.
if we could study a classical system for longer than its quantum
break time, we would see that the
behaviour was not chaotic but
quasi-periodic instead. Thus, quantum and classical realities
can be reconciled,
with the classical world naturally embedded
in a larger quantum reality. Or, as physicist Dan Kleppner of
ttie
Massachusetts Institute of Technology puts it, "Anything
classical mechanics can do, quantum mechanics can
do better".
Since much of the experimental work on quantum chaos has agreed
with theoretical predictions, it
could be tempting to say "So
what?". We already knew that quantum theory was right. Well,
research on
quantum chaos does hold out the promise of some remarkable
discoveries. Berry is excited by what appears
to be a deep connection
between the problem of finding the energy levels of a quantum
system that is
classically chaotic and one of the biggest unsolved
mysteries in mathematics: the Riemann hypothesis. This
concerns
the distribution of prime numbers. if you choose a number n and
ask how many prime numbers
there are less than n it turns out
that the answer closely approximates the formula: n/log n. The
formula is not
exact, though: sometimes it is a little high and
sometimes it is a little low. Riemann looked at these deviations
and saw that they contained periodicities. Berry likens these
to musical harmonies: "The question is what are
the harmonies
in the music of the primes? Amazingly, these harmonies or magic
numbers behave exactly like
the energy levels in quantum systems
that classically would be chaotic."

Deep connection

This correspondence emerges from statistical correlations between
the spacing of the Riemann numbers and
the spacing of the energy
levels. Berry and his collaborator Jon Keating used them to show
how techniques in
number theory can be applied to problems in
quantum chaos and vice versa. In itself such a connection is
very
tintisual- Although sonictimes described as the Queen of mathematics,
number theory is often thought of
as pretty useless, so this deep
connection with physics is quite astonishing. Berry is also convinced
that there
must be a particular chaotic system which when quantised
would have energy levels that exactly duplicate the
Riemann numbers.
'Finding this system could be the discovery of the century,"
he says. it would become a
model system for describing chaotic
systems in the same way that the simple harmonic oscillator is
used as a
model for all kinds of complicated oscillators. It could
play a fundamental role in describing all kinds of



chaos. The
search for this model system could be the holy grail of chaos.
Until we cannot be sure of its
properties, but Berry believes
the system is likely to be rather simple, and expects it to lead
to totally new
physics. It is a tantalising thought. out there
is a physical structure waiting to be discovered. if we find it,
the
remarkablee experiments that we have recently witnessed in
this discipline would be crowned by an
experimental apparatus
that could do more than anything to unlock the secrets of quantum
chaos.

Chaotic Chaos Scientific American Mar 94.

Students of chaos have clung to the notion that chaotic systems
retain some shreds of order. The shreds
manifest themselves in
the form of an attractor, a pattern of behavior toward which the
system periodically
settles. identifying the attractor enables
one to predict the final behavior of a chaotic system, at least
in a
qualitative, statistical sense. That comforting notion has
been damaged by Edward Ott of the University of
Maryland and John
C. Sommerer of Johns Hopkins University and their colleagues.
They have shown that for
certain systems that have more than one
attractor, even qualitative predictions are impossible. "The
repeatability of an experiment gets thrown into question,"
Ott says. The problem is rooted in the way a
chaotic system determines
which attractor to follow. The initial conditions that control
the choice are said to
be located in a basin of attraction. Ott
and Sommerer have spoiled the party by showing that a basin may
be
rather leaky: it may have "holes" that make it impossible
to predict which attractor the system will follow.
Building on
earlier mathematical work, the physicists used a computer to conduct
numerical experiments in
which a particle moving on a frictional
surface is occasionally pushed. Consequently, the particle could
begin
moving either periodically or sporadically. The researchers
found that even for this fairly simple system they
could not determine
which of the two attractors the particle would chase, because
one basin is riddled with
pieces of the other basin. in fact,
every area in one basin, no matter how small, contained pieces
of the other
basin within it. "Hence, arbitrarily small changes
can cause the system to go to a completely different
attractor,"
Ott remarks. The only way to guarantee an outcome is not to have
any error or noise whatsoever-a
practical impossibility for real
systems. And, anyway, what kind of chaos would that be? Ott points
out that
the results differ from other forms of chaos in which
the starting point straddles the boundary between two
basins of
attraction. In such borderline situations, one might be able to
move the starting point away from the
boundary so that the attractor
can be predicted. The same cannot be done for systems that have
riddled basins,
because no region is free of holes. "You're
always on the borderline," Ott explains. Although riddled
basins
appear only in situations that have certain spatial symmetries,
they are probably not rare. "A lot of physics is
based on
conservation laws, which are based on symmetries," Sommerer
observes. Currently the workers are
looking for real physical
phenomena that have riddled basins. They suspect that turbulent
fluids, chemical
mixtures and lasers may be among such systems.
Sommerer even speculates that experimentalists have
already encountered
this kind of chaos. Projects that went awry the second time around
could have been a
result of the mischievous property of riddled
basins. "I have a sneaking suspicion this might be the case
for
some," he intones. -Philip Yam


